

THEORY COMPETITION

SOLUTIONS AND MARKING SCHEME

Problem I. Chemistry

Question	Content	Points	Total
I.1	As a weak acid (HA), eugenol is partly dissociate in water to give H_3O^+ and A^- ions, according to the following equilibrium reaction: HA + H ₂ O \implies H ₃ O ⁺ + A ⁻ The dissociation constant is given by Ka = [H ₃ O ⁺][A ⁻]/[HA]; From the equation, it is understood that [H ₃ O ⁺] = [A ⁻] 1.64 g of eugenol = 1.64 g / 164 g.mol ⁻¹ = 0.01 mol	0.5	1.5
	Since it is dissolved in 1 L solution, the concentration of eugenol = 0.01 M Therefore $[H_3O^+]^2 = K_a[HA]$ or $[H_3O^+] = \sqrt{(Ka[HA])} = \sqrt{(6.5 \times 10^{-11} \times 0.01)} = 8.06 \times 10^{-7}$; since pH= -log[H ₃ O ⁺], then pH = 6.1	1.0	
I.2	Hydrogen = $6/16 \ge 128 \ge 48 \ge 2000 \le 1000 \le 10000 \le 10000 \le 10000 \le 10000 \le 10000000 \le 10000 \le 100000000$	0.25 0.25	0.5
I.3	The mass of the product (ethyl eugenolate and hydrogen bromide) is equal to the sum of the masses of the eugenol and ethyl bromide consumed. The mass of materials not involved in the reaction are unchanged. Therefore, the total mass after reaction is 41.0 g		0.5
I.4	As a weak acid (HA), eugenol is partly dissociate in water to give H ₃ O ⁺ and A ⁻ ions, according to the following equilibrium reaction: HA + H ₂ O \implies H ₃ O ⁺ + A ⁻ The dissociation constant is given by Ka = [H ₃ O ⁺][A ⁻]/[HA]; From the equation, it is understood that [H ₃ O ⁺] = [A ⁻] Therefore [H ₃ O ⁺] ² = K _a [HA] or [H ₃ O ⁺] from eugenol = $\sqrt{(Ka[HA])} = \sqrt{(6.5 \times 10^{-11} \times 0.02/2)} = 8.06 \times 10^{-6}$ As a strong acid HCl completely dissociate in water to give [H ₃ O ⁺] = 0.02/2 = 0.01 M Hence the total [H ₃ O ⁺] in the solution = [H ₃ O ⁺] _{eugenol} + [H ₃ O ⁺] _{HCl} = (0.01 + 8.06 \times 10^{-6}) ≈ 0.01 M Hence, the pH of the solution = -log [H ₃ O ⁺] = -log 0.01 = 2		1.0
I.5	Since the stoichiometric of the reaction is 1:1, it means that one mole of		
1.3	Since the stolchometric of the reaction is 1:1, it means that one mole of eugenol requires 1 mole of diethyl sulphate. Mr of Eugenol = $(10 \text{ x } 12) + (12 \text{ x } 1) + (2 \text{ x } 16) = 164 \text{ g.mol}^{-1}$ Mr of diethyl sulphate = $(4 \text{ x } 12) + (2 \text{ x } 5) + (1 \text{ x } 32) + (4 \text{ x } 16) = 154 \text{ g.mol}^{-1}$ Hence 82.0 g of eugenol = 82 g/164 g. mol ⁻¹ = 0.5 mol, and 115.5 g of diethyl sulphate = 115.5 g/154 g.mol ⁻¹ = 0.75 mol Therefore, the remaing reactant is 0,25 mole of diethyl sulphate = 0,25 mol x 154 g/mole = 38.5 g of diethyl sulphate .	0.5 0.5 0.5	1.5

	Science for Creative Innovation		
I.6	Initial KOH= $30 \text{ mL x } 0.25 \text{ mmol/mL} = 7.5 \text{ mmol}$	0.3	
	The excess of KOH= $10 \text{ mL x } 0.25 \text{ mmol/mL} = 2.5 \text{ mmol}$	0.3	
	KOH consumed for determination of acid value: $(7.5-2.5) \text{ mmol} = 5 \text{ mmol}$	0.3	1.5
	mg KOH consumed for 2 g of sample = 5 mmol x 56 mg/mmol = 280 mg	0.3	
	Acid Value = $280 \text{ mg}/2\text{g} = 140 \text{ mg KOH/g sample}$	0.3	
		•	
I.7	The polarity of carboxylic acid increase with the decrease in the number of carbon, so the lauric acid with 12 carbon is the most polar followed by		
	myristic and palmitic acids. Since the stationary phase is a polar materials and the solvent is non-polar, the lauric acid will have retardation factor (R_f) lowest and followed by myristic and palmitic acids, or (1) R_f lauric acid < (2) R_f myristic acid < (3) R_f palmitic acid		1.0
I.8 (1.5)	$\begin{array}{l} Mr \ of \ C_{11}H_{23}COOH = (12 \ x \ 12) + (24 \ x \ 1) + (2 \ x \ 16) = 200 \ g.mol^{-1} \\ Mr \ of \ CH_{3}OH = (1 \ x \ 12) + (4 \ x \ 1) + (1 \ x \ 16) = 32 \ g.mol^{-1} \\ Mass \ of \ CH_{3}OH = 160 \ mL \ x \ 0.8 \ g.mL^{-1} = 128 \ g \\ Mole \ of \ CH_{3}OH = 128 \ g/32 \ g.mol^{-1} = 4 \ mol \\ Mole \ of \ CH_{3}OH = 128 \ g/32 \ g.mol^{-1} = 4 \ mol \\ Mole \ of \ CH_{1}H_{23}COOH = 100 \ g/200 \ g.mol^{-1} = 0.5 \ mol \\ Suppose \ the \ ester \ formed = x \ mol, \ the \ H_{2}O \ produces \ x \ mol, \ then \\ The \ remaining \ lauric \ acid = (0.5-x) \ mol \ and \\ the \ remaining \ methanol = (4.0-x) \\ K_{eq} = x.x/(0.5-x)(4.0-x) \rightarrow 0.1x^2 + 4.05 \ x \ -1.8 = 0 \\ By \ using \ abc \ formula, \ we \ have \ x = 0.45 \ mol \end{array}$	1.0	1.5
	Hence, the ester formed = $0.45 \text{ mol x } 214 \text{ g.mol}^{-1} = 96.3 \text{ g}$	0.5	
I.9	$\frac{26 \text{ g } \text{C}_2\text{H}_2 = 26 \text{ g} : 26 \text{ mol} \cdot \text{g}^{-1} = 1.0 \text{ mol}}{40 \text{ g } \text{HCl} = 40 \text{ g} : 36.5 \text{ mol} \cdot \text{g}^{-1} = 1.1 \text{ mol}}$	0.5	1.0
	As mol C_2H_2 is smaller than mol HCl, so the formed C_2H_3Cl will be equal to the mol of C_2H_2 , i.e. 1.0 mol or equivalent to 62.5 g	0.5	
			10