
$16^{\text {th }}$ International Junior Science Olympiad

Theoretical test
 Model Answer

DECEMBER $6^{\text {th }}, 2019$

Name		Code	
Country		Signature	

QUESTION 1			
Part 1		Points	Answers
I	i	0.25	$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta \mathrm{H}=-802.3 \mathrm{~kJ} / \mathrm{mol}$
			$\begin{aligned} \mathrm{Q} & =\operatorname{mxcx\Delta t} \\ & =60 \mathrm{~g} \times 4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \times(40-25)^{\circ} \mathrm{C}=3.76 \mathrm{~kJ} \end{aligned}$
			Energy released $=3.76 \mathrm{~kJ}$
	iii	0.5	(Show your work) $\begin{aligned} & \mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Delta \mathrm{H}=-802.3 \mathrm{~kJ} / \mathrm{mol} \\ & (4 \mathrm{C}-\mathrm{H}+2 \mathrm{X} 498 \mathrm{~kJ} / \mathrm{mol})-(2 \mathrm{X} 841 \mathrm{~kJ} / \mathrm{mol}+2 \mathrm{X} 464 \mathrm{~kJ} / \mathrm{mol} \times 2)=-802.3 \mathrm{~kJ} / \mathrm{mol} \\ & (4 \mathrm{C}-\mathrm{H}+996 \mathrm{~kJ} / \mathrm{mol})-(3538 \mathrm{~kJ} / \mathrm{mol})=-802.3 \mathrm{~kJ} / \mathrm{mol} \\ & (4 \mathrm{C}-\mathrm{H})=+2542 \mathrm{~kJ} / \mathrm{mol}-802.3 \mathrm{~kJ} / \mathrm{mol} \\ & (4 \mathrm{C}-\mathrm{H})=+1652 \mathrm{~kJ} / \mathrm{mol} \\ & \mathrm{C}-\mathrm{H}=+435 \mathrm{~kJ} / \mathrm{mol} \end{aligned}$ Final answer is correct 0.5 If final is incorrect but workout correct $\mathbf{=} \mathbf{0 . 2 5}$
			Bond enthalpy $=+413 \mathrm{~kJ} / \mathrm{mol}$

QUESTION 1

Part 2		Points	Answers
II	i	0.25	(Show your work) $\begin{aligned} & P V=n R T \\ & V=\frac{n R T}{P}=\frac{1.25 \times 8.314 \times 3.10 \times 10^{2}}{101 \times 10^{3}} \\ & =3.19 \times 10^{-2} \mathrm{~m}^{3} \end{aligned}$
			volume $=3.19 \times 10^{-2} \mathrm{~m}^{3}$
	ii	0.5	(Show your work) fracrion of the volume occupied by gas molecules $\begin{gathered} =\frac{\text { total volume of molecules }}{\text { total volume of the container }}=\frac{6.16 \times 10^{-6}}{3.19 \times 10^{-2}} \\ =1.93 \times 10^{-4} \end{gathered}$ (0.25 for workings out)
			Fraction of volume $==1.93 \times 10^{-4}(0.25$ for correct answer $)$
	iii	0.5	(Show your work) $\begin{aligned} & T=-125 C^{o}(\pm 6.25)=148 K(\pm 6.25) \\ & P=10 \times 10^{5} P a(\pm 2.5) \\ & V=\frac{n R T}{P}=\frac{1.25 \times 8.314 \times 148}{10 \times 10^{5}}=1.54 \times 10^{-3} \mathrm{~m}^{3} \\ & \frac{\Delta V}{V_{1}}=\frac{1.54 \times 10^{-3}-3.19 \times 10^{-2}}{3.19 \times 10^{-2}} \times 100=-95.2 \% \\ & (0.25) \end{aligned}$
			Percentage volume change $=-95.2 \%(-0.25$ for omitting the sign). (0.25)

QUESTION 2

Part 1	Poin ts	Answers
i	2.0	(Show your work) Assume a 1 L sample of QI gas, moles of gas is $\begin{aligned} & \mathrm{n}=\mathrm{PV} / \mathrm{RT}=(1.00 \mathrm{~atm})(1.00 \mathrm{~L}) /\left(\left(0.082057 \mathrm{~atm} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(25.0+273.15 \mathrm{~K})\right) \\ & \mathrm{n}=0.04087 \mathrm{~mol},(0.25) \end{aligned}$ given the density of the gas ($4.668 \mathrm{~g} / \mathrm{L}$), the mass of Ql gas in 1 L is 4.668 g . Therefore, the molar mass of QI gas is = $(4.668 \mathrm{~g} / 0.04087 \mathrm{~mol})=114.22 \mathrm{~g} / \mathrm{mol}(0.25)$ Moles of C and H : Mole of carbon $=0.003436 \mathrm{~mol} \mathrm{C} \mathrm{(0.25)}$ Mole of hydrogen $=0.007727 \mathrm{~mol} \mathrm{H}(0.25)$ Ratio of C : Hempirical formula is $\mathrm{C}_{4} \mathrm{H}_{9}(0.25)$ and empirical formula mass is $57.11 \mathrm{~g} / \mathrm{mol}(0.25)$ Ratio of EF: MM = 2 (0.25) The molecular formula $=\mathrm{C}_{8} \mathrm{H}_{18} \quad$ (0.25)
ii	0.5	$\begin{aligned} & a=2(0.25) \\ & b=110(0.25) \end{aligned}$
iii	1.0	Show your work) $\begin{aligned} & 2 \mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6} \rightarrow 110 \mathrm{H}_{2} \mathrm{O} \\ & 2 \times 890 \mathrm{~g} \rightarrow 110 \times 18 \mathrm{~g} \\ & 1780 \mathrm{~g} \text { Tristearin } \rightarrow 1.98 \mathrm{~L} \mathrm{H}_{2} \mathrm{O} \end{aligned}$ Amount of Tristearin that can produce 3.8L of $\mathrm{H}_{2} \mathrm{O}=3416.16 \mathrm{~g}=\mathrm{X}$ 1 mole Tristearin $=458$ moles of ATP (0.25) $\mathrm{X}=3416.16 \mathrm{~g}=3.8 \mathrm{~mol}$ of tristearin $=458 \times 6.02 \times 10^{23} \times 3.8$ $=1.058 \times 10^{27}$ molecules (0.25)
		ATP molecules $=1.058 \times 10^{27}$ molecules (0.5)

QUESTION 2

Part 2	Points	Answers
i	0.5	$\begin{aligned} & \hline \hline \text { Show your work) } \\ & \quad \text { A- Heat lost by camel body = heat gained by } \\ & \quad \quad \quad \text { ater (sweat) } \\ & Q=m_{c} c \Delta T=m_{w} L_{v} \\ & 5.50 \times 10^{2} \times 3480 \times(41.0-33.0)=m_{w} \times \\ & 2.42 \times 10^{6} \quad\left(\pm 2.50^{\circ} \mathrm{C}\right) \\ & m_{w}=6.33 \mathrm{~kg} \\ & V=\frac{m}{\rho}=\frac{6.33}{1}=6.33 \mathrm{~L} \end{aligned}$
		Max. amount of water $=6.33 \mathrm{~L}$
ii	$\begin{aligned} & 0.5(0.25 \mathrm{pt} \\ & \text { for } \\ & \text { calculating } \\ & \text { the total } \\ & \text { area })+ \\ & (0.25 \mathrm{pt} \text { for } \\ & \text { calculating } \\ & \text { the } \\ & \text { pressure }) \end{aligned}$	(Show your work) A- Area of the circle $=\pi r^{2}=0.0314 \mathrm{~m}^{2}$ Area of the circular sector $=\frac{\theta}{360} \pi r^{2}=0.00262 \mathrm{~m}^{2}$ Area of a foot $=0.0314-0.00262=0.0288 \mathrm{~m}^{2}$ Area of all feet $=0.115 \mathrm{~m}^{2}$ $P=\frac{F}{A}=\frac{5.50 \times 10^{2} \times 9.81}{0.115}=4.69 \times 10^{4} \mathrm{~Pa}$
		Pressure $=4.68 \times 10^{4} \mathrm{~Pa}$

QUESTION 3			
Part 2		Points	Answers
I	i	0.25	Choice is. d. Both dry ice and solid water have polar bonds, London dispersion forces, and hydrogen-bonding in solid water.
	ii	1.0 (no deduction of points for S.F.). If a ratio is given, also acceptable.	$\begin{aligned} & \text { (Show your work) } \\ & Q_{\text {total }}=Q_{\text {ICE }}+L_{\text {fusIon }}+Q_{\text {water }}+L_{\text {evaporation }}+Q_{\text {vapour }}(0.25) \\ & 1559=[0.0005 \times 2090 \times 0-(-5)]+[333000 \times 0.0005]+[0.0005 \\ & X^{4180 \times(100-0)]}+[2256 \times 0.0005]+\left[0.0005 \times C_{\text {(VAPOUR) }} \times(150-\right. \\ & 100)] \\ & 1559=381.853+\left(0.025 \times C_{\text {(VAPOUR) })}\right)(0.25) \\ & C_{\text {(VAPOUR) }}=49.947 / 0.025=1997.88 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C} \\ & \quad \text { RATIO }=\frac{C_{\text {ice }}}{\text { C vapour }}=2090 / 1997.88=1.04 \end{aligned}$
			The ratio is 1.04 (0.5) If final answer correct = 1.0

QUESTION 3

Part 1		Points	Answers
II			(Show your work) $\begin{aligned} & \begin{array}{l} W_{f}=m c \Delta T+ \\ \quad m l_{f} \\ \quad=5.00 \times 10^{-4} \times 2090 \times(0.00-(-5.00)) \\ \quad+5.00 \times 10^{-4} \times 3.33 \times 10^{5} \\ \quad W_{f}=5.225+166.5=171.7 \mathrm{~J}(0.5) \\ \quad \frac{1}{2} m v^{2}=m g \Delta h-W_{f} \quad(\text { neglect the mass of the ice }) \\ \frac{1}{2} m v^{2}=m g \Delta h-171.7 \\ v_{B}=\sqrt{2 g \Delta h-68.7} \\ v_{B}=\sqrt{2 \times 9.81 \times 10-68.7}=11.3 \mathrm{~m} / \mathrm{s}(0.5) \end{array} \end{aligned}$ Phase 2: $\begin{align*} & v_{B} \sin \theta=g t(0.25) \\ & t=0.575 \mathrm{~s} \\ & \quad \text { Flying time }=2 t=1.15 \mathrm{~s} \\ & \quad x=v_{B} \cos \theta \cdot t=11.3 \mathrm{~m}(0.25) \\ & y=v_{B} \sin \theta \cdot t-\frac{1}{2} g t^{2}+0.2=1.82 \mathrm{~m} \tag{0.25} \end{align*}$
	i		Time $=1.15 s(0.25)$.
	ii		Distance $=11.3 \mathrm{~m}(0.25)$
	iii		Maximum height from the ground $=1.82 \mathrm{~m}$ (0.25

	QUESTION 4		
Part 1		Points	Answers
	a	1.0	$\begin{array}{\|l\|} \hline \text { (Show your work) } \\ \quad T . d_{1}=n . d_{2} \\ -T=\frac{72.0 \times 9.81 \times 13.5 \times 10^{-2}}{5.20 \times 10^{-2}}=1.83 \times 10^{3} \mathrm{~N} \end{array}$
			(Show your work) $\begin{aligned} & -S . T=\frac{1.83 \times 10^{3}}{23 \times 10^{-4}}=7.96 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \\ & (0.25) \end{aligned}$
			b) specific tension $=7.96 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ (0.25)
	c	0.5	(Show your work) - The two gastrocnemius muscles exert force of: $T=1.83 \times 10^{3} \times 0.6=1.10 \times 10^{3} \mathrm{~N}$ So each muscle exerts: $\begin{aligned} & 2 \grave{T} \cos (20)=1.10 \times 10^{3} \mathrm{~N} \\ & \grave{T}=584 \mathrm{~N} \end{aligned}$ (0.25)
			c) force by each muscle $=584 \mathrm{~N}(0.25)$
		0.25	Your selection is ...NO...
			(Show your work)
ii		1.0	$\begin{aligned} & F . \Delta t=\Delta P \\ & F \times 55.0 \times 10^{-3}=4.25 \times 3.20-0 \\ & F=247 \mathrm{~N} \text { per } 6.20 \times 10^{2} \mathrm{~mm}^{2}> \\ & 36.0 \mathrm{~N} \text { per } 4.90 \times 10^{2} \mathrm{~mm}^{2} \\ & 0.5 \mathrm{pt} \text { for relationships, } 0.5 \mathrm{pt} \text { for final answer } \end{aligned}$
iii		0.5	Sorting from highest to lowest performance : Brand 6 > Brand $1>$ Brand $2>$ Brand $3>$ Brand 5> Brand 4>Brand 7 full answer is required.

QUESTION 4

QUESTION 4

Part 3		Points	Answers
III	i	0.5	Choice isd.........
	ii	0.25	Choice isb.........
	iii	0.5	Choice isa.........

QUESTION 5

QUESTION 5

Part 1	Points	Answers
iii	0.25	a) $6 \mathrm{Fe}^{+2} \rightarrow 6 \mathrm{Fe}^{+3}+6 \mathrm{e}^{-}$
	0.25	b) $2 \mathrm{Cr}^{+6}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{+3}$ - some may use the $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
iv	0.25	Zinc
	0.25	$\begin{aligned} & \text { Ecell }(\mathrm{Zn})=-0.74-(-0.76)=+0.02 \mathrm{~V} \\ & \text { Ecell }(\mathrm{Cu})=-0.74-(+0.34)=-1.08 \mathrm{~V} \end{aligned}$

QUESTION 5

Part 2		Points	Answers
II	i	0.25	Choice isb............
	ii	0.25	Choice isb............
	iii	0.25	Choice isa............
	iv	0.25	Choice isc.........
	v	0.25	Choice isb.........
	vi	0.25	Choice isb.........

QUESTION 5			
Part 3		Points	Answers
III	i	0.5	(Show your work) $\begin{equation*} F=\frac{Y A \Delta L}{L}=\frac{220 \times 10^{9} \times 2.0 \times 10^{-6} \times 0.5 \times 10^{-3}}{2.0} \tag{0.25} \end{equation*}$ Weight $=1.1 \times 10^{2} N(0.25)$
	ii	0.5	(Show your work) $\begin{aligned} & \Delta L=\frac{F L}{Y A}, \Delta L \propto \frac{L}{r^{2}} \\ & \frac{\Delta L_{1}}{\Delta L_{2}}=\frac{L_{1} r_{2}{ }^{2}}{L_{2} r_{1}{ }^{2}}=\frac{1 \times 1^{2}}{3 \times 3^{2}}=\frac{1}{27} \\ & (0.25) \end{aligned}$
			$\begin{aligned} & \text { The ratio }=\frac{1}{27} \\ & (0.25) \end{aligned}$
	iii	0.5	(Show your work) $\begin{aligned} & \Delta L=\alpha L \Delta T \\ & F=\frac{Y A \Delta L}{L}=\frac{Y A \alpha L \Delta T}{L}=Y A \alpha \Delta T \\ & (0.25) \end{aligned}$
			$\begin{aligned} & \text { Force exerted }=Y A \alpha \Delta T \\ & (0.25) \end{aligned}$

