

Theoretical test <u>Model Answer</u>

DECEMBER 6th, 2019

Name	Code	
Country	Signature	

	QUESTION 1			
Pa	art 1	Points	Answers	
	i	0.25	$CH_{4(g)}$ + $2O_{2(g)} \rightarrow CO_{2(g)}$ + $2H_2O_{(g)}$ ΔH = - 802.3 kJ/mol	
	ii	0.5	$Q = m x c x \Delta t$ = 60g x 4.18 J/g°C x (40-25)°C = 3.76 kJ	
			$Energy \ released = \ 3.76 \ kJ$	
Ι	iii	0.5	(Show your work) $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)} \Delta H = -802.3 \text{ kJ/mol}$ (4C-H + 2X 498 kJ/mol) - (2X841 kJ/mol + 2X 46 4 kJ/mol X 2) = -802.3 kJ/mol (4C-H + 996 kJ/mol) - (3 538 kJ/mol) = -802.3 kJ/mol (4C-H) = +2 542 kJ/mol - 802.3 kJ/mol (4C-H) = +1652 kJ/mol - 802.3 kJ/mol C-H = +435 kJ/mol Final answer is correct 0.5 If final is incorrect but workout correct = 0.25 Bond enthalpy = +413 \text{ kJ/mol}	

	QUESTION 1				
Р	art 2	Points	Answers		
	i	0.25	(Show your work) PV = nRT $V = \frac{nRT}{P} = \frac{1.25 \times 8.314 \times 3.10 \times 10^2}{101 \times 10^3}$ $= 3.19 \times 10^{-2}m^3$		
			$volume = 3.19 \times 10^{-2} m^3$		
Π	ii	0.5	(Show your work) $V(of one molecule) = \frac{4}{3}\pi R^{3} = \frac{4}{3}\pi \left(\frac{2.50 \times 10^{-10}}{2}\right)^{3} = 8.18 \times 10^{-30}m^{3}$ $N(number of molecules)$ $= n (number of moles) \times N_{A}(Avogadro's number)$ $V (total volume of molecules)$ $= N (number of molecules)$ $V (volume of one molecule)$ $V (total volume of molecules)$ $= 1.25 \times 6.02 \times 10^{23} \times 8.18 \times 10^{-30} = 6.16 \times 10^{-6}m^{3}$ $fraction of the volume occupied by gas molecules$ $= \frac{total volume of molecules}{total volume of the container} = \frac{6.16 \times 10^{-6}}{3.19 \times 10^{-2}}$ $= 1.93 \times 10^{-4}$ (0.25 for workings out) $Fraction of volume = 1.93 \times 10^{-4} (0.25 \text{ for correct answer})$		
	iii	0.5	(Show your work) $T = -125 C^{\circ}(\pm 6.25) = 148K(\pm 6.25)$ $P = 10 \times 10^{5} Pa (\pm 2.5)$ $V = \frac{nRT}{P} = \frac{1.25 \times 8.314 \times 148}{10 \times 10^{5}} = 1.54 \times 10^{-3} m^{3}$ $\frac{\Delta V}{V_{1}} = \frac{1.54 \times 10^{-3} - 3.19 \times 10^{-2}}{3.19 \times 10^{-2}} \times 100 = -95.2\%$ (0.25) Percentage volume change = -95.2% (-0.25 for omitting the sign). (0.25)		

	QUESTION 1						
Part 3 Points		Points	Answers				
	i	0.25	<i>Choice is</i> d				
	ii	0.25	<i>Choice is</i> a				
III	iii	0.25 for the whole table being correct	Factor a b c d e f g +/0 + 0 + 0 0				
	iv	0.25	<i>Choice is</i> a				
	v	0.25	<i>Choice is</i> a				
	vi	0.25	<i>Choice is</i> d				

	QUESTION 2			
Pa	Part 1 Poin ts		Answers	
	j	2.0	(Show your work) Assume a 1 L sample of QI gas, moles of gas is $n = PV/RT = (1.00 \text{ atm})(1.00 \text{ L})/((0.082057 \text{ atm L mol}^{-1} \text{ K}^{-1})(25.0 + 273.15 \text{ K}))$ n = 0.04087 mol, (0.25) given the density of the gas (4.668 g/L), the mass of QI gas in 1 L is 4.668 g. Therefore, the molar mass of QI gas is = (4.668 g / 0.04087 mol) = 114.22 g/mol (0.25) Moles of C and H: Mole of carbon = 0.003436 mol C (0.25) Mole of hydrogen = 0.007727 mol H (0.25) Ratio of C: Hempirical formula is C ₄ H ₉ (0.25) and empirical formula mass is 57.11 g/mol (0.25) Ratio of EF: MM = 2 (0.25) The molecular formula = C ₈ H ₁₈ (0.25)	
	ii	0.5	a = 2 (0.25) b = 110 (0.25)	
	iii 1.0		Show your work) $2C_{57}H_{110}O_6 \rightarrow 110H_2O$ $2 \times 890 \text{ g} \rightarrow 110 \times 18 \text{ g}$ 1780 g Tristearin $\rightarrow 1.98L H_2O$ Amount of Tristearin that can produce $3.8L \text{ of } H_2O = 3416.16 \text{ g} = X$ 1 mole Tristearin = 458 moles of ATP (0.25) $X = 3416.16 \text{ g} = 3.8 \text{ mol of tristearin = 458 \times 6.02 \times 10^{23} \times 3.8}$ $= 1.058 \times 10^{27} \text{ molecules (0.25)}$ $ATP \text{ molecules } = 1.058 \times 10^{27} \text{ molecules (0.5)}$	

Theory – Model answers

QUESTION 2				
Part 2	Points	Answers		
i	0.5	(Show your work) A- Heat lost by camel body = heat gained by water (sweat) $Q = m_c c\Delta T = m_w L_v$ $5.50 \times 10^2 \times 3480 \times (41.0 - 33.0) = m_w \times$ 2.42×10^6 (±2.50°C) $m_w = 6.33kg$ $V = \frac{m}{\rho} = \frac{6.33}{1} = 6.33L$ Max. amount of water = 6.33L		
ii	0.5 (0.25 pt for calculating the total area) + (0.25 pt for calculating the pressure)	(Show your work) A- Area of the circle = $\pi r^2 = 0.0314 m^2$ Area of the circular sector = $\frac{\theta}{360} \pi r^2 = 0.00262m^2$ Area of a foot = $0.0314 - 0.00262 = 0.0288m^2$ Area of all feet = $0.115 m^2$ $P = \frac{F}{A} = \frac{5.50 \times 10^2 \times 9.81}{0.115} = 4.69 \times 10^4 Pa$ Pressure = $4.68 \times 10^4 Pa$		

			QUESTION 2
Pa	art 3	Points	Answers
	i	0.25	Choice isb
	ii	0.5	Choice isa
III	iii	0.25	Choice isd
	iv	0.25	Choice isb
	v	0.25	Choice isc
	vi	0.5	Choice isc

	QUESTION 3			
Pa	art 2	Points	Answers	
	i	0.25	Choice is. d. Both dry ice and solid water have polar bonds, London dispersion forces, and hydrogen-bonding in solid water.	
Ι	ii	1.0 (no deduction of points for S.F.). If a ratio is given, also acceptable.	(Show your work) Q total = Q ICE + L FUSION + Q water + L evaporation +Q vapour (0.25) 1559 = $[0.0005 \times 2090 \times 0 - (-5)] + [333000 \times 0.0005] + [0.0005 \times 4180 \times (100 - 0)] + [2256 \times 0.0005] + [0.0005 \times C_{(VAPOUR)} \times (150 - 100)]$ 1559 = $381.853 + (0.025 \times C_{(VAPOUR)})$ (0.25) C (VAPOUR) = $49.947 / 0.025 = 1997.88 \text{ J/kg.°C}$ RATIO = $\frac{C ice}{C vapour}$ = $2090/1997.88 = 1.04$ The ratio is 1.04 (0.5) If final answer correct = 1.0	

	QUESTION 3				
Pa	art 1	Points	Answers		
II			(Show your work) $W_{f} = mc\Delta T + ml_{f} = 5.00 \times 10^{-4} \times 2090 \times (0.00 - (-5.00)) + 5.00 \times 10^{-4} \times 3.33 \times 10^{5}$ $W_{f} = 5.225 + 166.5 = 171.7 J (0.5) = \frac{1}{2}mv^{2} = mg\Delta h - W_{f} \text{ (neglect the mass of the ice)}$ $\frac{1}{2}mv^{2} = mg\Delta h - 171.7$ $v_{B} = \sqrt{2g\Delta h - 68.7}$ $v_{B} = \sqrt{2 \times 9.81 \times 10 - 68.7} = 11.3 \text{ m/s (0.5)}$ $\frac{\text{Phase 2:}}{v_{B}sin\theta} = gt (0.25)$ $t = 0.575 \text{ s}$ Flying time = 2t = 1.15 s $x = v_{B}cos\theta. t = 11.3 \text{ m (0.25)}$ $y = v_{B}sin\theta. t - \frac{1}{2}gt^{2} + 0.2 = 1.82 \text{ m}$ (0.25)		
	i		Time = 1.15 s (0.25).		
	ii		<i>Distance = 11.3 m (0.25)</i>		
	iii		Maximum height from the ground $=1.82 m (0.25)$		

	QUESTION 3				
Pa	art 3	Points	Answers		
III	i	0.25	Choice isc		
	ii	0.25	Choice isa		
	iii	1.0	Choice isd		
	iv	0.5	Choice isc		
	V	1.0	Choice isd		
	vi	0.5	Choice isb		
	vii	0.25	Choice isc		

				QUESTION 4
Pa	art 1		Points	Answers
		a	1.0	(Show your work) $T.d_1 = n.d_2$ $-T = \frac{72.0 \times 9.81 \times 13.5 \times 10^{-2}}{5.20 \times 10^{-2}} = 1.83 \times 10^3 N$ <i>a) force</i> = $1.83 \times 10^3 N$ (0.5 to write the proper relationship and 0.5 pt to find tension)
	i	b	0.5	(Show your work) - $S.T = \frac{1.83 \times 10^3}{23 \times 10^{-4}} = 7.96 \times 10^5 N/m^2$ (0.25) b) specific tension = $7.96 \times 10^5 N/m^2$ (0.25)
		с	0.5	(Show your work) - The two gastrocnemius muscles exert force of : $T = 1.83 \times 10^3 \times 0.6 = 1.10 \times 10^3 N$ So each muscle exerts: $2\tilde{T} \cos(20) = 1.10 \times 10^3 N$ $\tilde{T} = 584N$ (0.25) c) force by each muscle = 584N (0.25)
			0.25	Your selection isNO
	ii		1.0	(Show your work) $F.\Delta t = \Delta P$ $F \times 55.0 \times 10^{-3} = 4.25 \times 3.20 - 0$ $F = 247 N \text{ per } 6.20 \times 10^2 mm^2 >$ $36.0 N \text{ per } 4.90 \times 10^2 mm^2$ 0.5 pt for relationships, 0.5 pt for final answer
	iii		0.5	Sorting from highest to lowest performance : Brand 6 > Brand 1> Brand 2 > Brand 3> Brand 5> Brand 4>Brand 7 full answer is required.

QUESTION 4				
Part 2	Points	Answers		
i	0.5	(Show your work) <i>E</i> = constant + 0.059 log[MA ⁺] -0.430 = Constant + 0.059 log 0.100x10 ⁻³ Constant = - 0.194 (0.25) To find [MA ⁺]: -0.300 = - 0.194 + 0.059 log [MA ⁺] -0.106 = 0.059 log [MA ⁺] [MA ⁺] = 0.01597M = 15.97 mM [MA ⁺] is15.97 mM (0.25)		

QUESTION 4			
Part 3		Points	Answers
	i	0.5	Choice isd
ш	ii	0.25	Choice isb
	iii	0.5	Choice isa

Theory – Model answers

QUESTION 5				
Part 1 Points		Points	Answers	
				(Show your work) The reactions are as follows:
	1			$ZnCO_{3(s)} + CaCO_{3(s)} \rightarrow ZnO_{(s)} + CaO_{(s)} + 2 CO_{2(g)}$
				Or:
				$ZnCO_{3(s)} \rightarrow ZnO_{(s)} + CO_{2(g)}$
				$CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$
				(0.25)
				Let m = mass, in grams, of $ZnCO_3$ in the mixture and
				let 30.00 – m = mass in grams of CaCO ₃ in the mixture.
				Students need to write an expression for calculating the mass of $\ensuremath{\text{CO}_2}$
	i i	i	2.0	produced by $ZnCO_3$ and an expression for the mass of CO_2 produced from
				CaCO ₃ .
				The sum of the expressions of mass of CO_2 from $ZnCO_3$ and $CaCO_3 = 12.00g$
				$[(30.00 - m) \times \frac{44.01}{100.09}] + [m \times \frac{44.01}{125.39}] = 12.00 \text{ g} (1)$
				Solve for m: m = 13.41 g
				% by mass of $ZnCO_3 = \frac{13.41 \text{ g}}{30.00 \text{ g}} \times 100 \%$ (0.5)
				= <u>44.70 %</u> (4 significant figures) (0.25)
				Percentage = 44.70 %
				<u> </u>
ł				
			0.25	<i>Relative atomic mass</i> = (50X0.04345) + (52X0.83789) + (53X0.09501) +
		а	0.23	(54X0.02365) = 52.05541amu = 52.05 amu
			0.25	w. ⁵³ Cr = $\frac{250 \times 1000 \times 104.11}{223.833}$ X 0.09501=11, 047.84717 g
		b	(points	
	ii		be	$= 1.1 \times 10^{+} \text{g}$
			deducte	
			d whether	
ļ			they	
			used	
			answer	
ļ	1 '		ora	

QUESTION 5			
Pa	Part 1 Points		Answers
	iii	0.25	a) $6Fe^{+2} \rightarrow 6Fe^{+3} + 6e^{-1}$
		0.25	b) $2Cr^{+6} + 6e^- \rightarrow 2Cr^{+3}$ - some may use the $Cr_2O_7^{2-}$
	iv	0.25	Zinc
		0.25	Ecell (Zn) = -0.74 - (-0.76) = +0.02V Ecell (Cu) = -0.74 - (+0.34) = -1.08V

QUESTION 5				
Part 2 Poin		Points	Answers	
П	i	0.25	Choice isb	
	ii	0.25	Choice isb	
	iii	0.25	Choice isa	
	iv	0.25	Choice isc	
	v	0.25	Choice isb	
	vi	0.25	Choice isbb.	

QUESTION 5				
Part 3 Points		Points	Answers	
III	i	0.5	(Show your work) $F = \frac{YA\Delta L}{L} = \frac{220 \times 10^9 \times 2.0 \times 10^{-6} \times 0.5 \times 10^{-3}}{2.0}$ (0.25) Weight = 1.1 × 10 ² N (0.25)	
	ii	0.5	(Show your work) $\Delta L = \frac{FL}{YA}, \Delta L \propto \frac{L}{r^2}$ $\frac{\Delta L_1}{\Delta L_2} = \frac{L_1 r_2^2}{L_2 r_1^2} = \frac{1 \times 1^2}{3 \times 3^2} = \frac{1}{27}$ (0.25) The ratio = $\frac{1}{27}$ (0.25)	
	iii	0.5	(Show your work) $\Delta L = \alpha L \Delta T$ $F = \frac{YA \Delta L}{L} = \frac{YA \alpha L \Delta T}{L} = YA \alpha \Delta T$ (0.25) Force exerted = YA \alpha \Delta T (0.25)	