

 $16^{\text {th }}$ International Junior Science Olympiad

MULTIPLE CHOICE COMPETITION

SOLUTIONS

DECEMBER $4^{\text {th }} 2019$
MCQ Final

Q1

Answer D
Explanation
$\sum F \propto t^{2}$ (Given) $\rightarrow \frac{\Delta v}{\Delta t} \propto t^{2}$
$v \propto t^{3}$
$v^{2} \propto t^{6}$
$E_{k} \propto v^{2}$
$E_{k} \propto t^{6}$

| Q2 |
| :--- | :--- |
| Answer C |
| Explanation |
| $\sum F=0$ |
| $B-w_{c}-w_{p}=0$ |
| $m_{w} g-m_{c} g=m_{p} g n_{p}$ |
| $\rho_{w} V_{w}-\rho_{c} V_{c}=m_{p} n_{p}$ |
| $\pi r^{2} h\left(\rho_{w}-\rho_{c}\right)=m_{p} n_{p}$ |
| $n_{p}=\frac{\pi r^{2} h\left(\rho_{w}-\rho_{c}\right)}{m_{p}}$ |
| $n_{w}=\frac{\pi r^{2} h\left(\rho_{w}-\rho_{c}\right)}{m_{p}}$ |
| $n_{o}=\frac{\pi r^{2} h\left(\rho_{o}-\rho_{c}\right)}{m_{p}}$ |
| $\frac{n_{w}}{n_{o}}=\frac{\left(\rho_{w}-\rho_{c}\right)}{\left(\rho_{o}-\rho_{c}\right)}$ |

Q3.

Answer D
Explanation
During light hours, algae carry out photosynthesis and release oxygen

Q4.

Answer B

Explanation

for i : is true because the bold lines signify a separation of phases.
For ii: incorrect as lowering pressure does not change temperature
for iii: Correct as it is the triple point.
for iv: incorrect as the vapor pressure is equal to the atmospheric pressure (i.e. definition of boiling point)
Therefore, I and iii are the correct answers.

Q5	
Answer A	
Explanation This is a dimensional analysis question starting with 12 molecules of water: in 1 m molecules of NH_{3} there are 3 molecules of A second option: 12 molecules $\times(3 / 2)=18$ A third option is to convert molecules to m constant. OR	ule of water there is 1 molecule of NH_{3}; and in 2 cules and moles to molecules cancelling Avogadro's
$\begin{aligned} & \text {-balance } \mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3} \\ & \mathrm{NH}_{3}+\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{CH}_{3} \mathrm{NH}_{2}+ \\ & \mathrm{H}_{2} \mathrm{O} \\ & 3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3} \text { ratio } 3: 2 \\ & 3 \times 6.02 \times 10^{23} \rightarrow 2 \times 6.02 \times \\ & \mathrm{NH}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O} \text { ratio } 1: \quad 1 \\ & 6.02 \times 10^{23} \rightarrow 6.02 \times 10^{23}: \end{aligned}$	

Q6.

Answer D
Explanation
Data from the figures

Q7.
Answer D
Explanation
\qquad BT Bt bT bt Bt BBTt Black long BBtt Black short BbTt Black long Bbtt Black short

Q8.

Answer D
Explanation
basic knowledge

Q9.
Answer B
Explanation

$I_{1}=I_{2}+I_{3}$
$12.0=2.00 I_{3}+4.00 I_{1}$
$8.00=6.00 I_{2}-2.00 I_{3}$
Solving the equations 1,2,3 gives
$I_{2}=1.64 \mathrm{~A}$
$I_{3}=0.909 \mathrm{~A}$
$I_{1}=2.55 \mathrm{~A}$
The potential difference between points c, d
$\Delta V=2.00 \times I_{3}$
$\Delta V=1.82 \mathrm{~V}$
And point c with higher potential than point d

Q11.
Answer A
Explanation
In (I) the trait appears in the father may be dominant or recessive.
As the trait appears in females and not in males' children, therefore mother is not a carrier and the trait will not appear in females unless it is dominant

Therefore, it is X-linked dominant

In (II) As the trait doesn't appear in both parents and appears in the only males of their kids, the mother carries the trait as recessive.
Therefore, it is X -linked recessive.

Q12.

Answer C
Explanation
Energy level (n) $=5$ is not included in the silver ion as the $4 s^{1}$ electron is lost.

- $\quad \mathrm{Ag} \quad 1 \mathrm{~S}^{2}, 2 \mathrm{~S}^{2}, 2 \mathrm{P}^{6}, 3 \mathrm{~S}^{2}, 3 \mathrm{P}^{6}, 4 \mathrm{~S}^{2}, 3 \mathrm{~d}^{10}, 4 \mathrm{p}^{6}, 5 \mathrm{~S}^{1}, 4 \mathrm{~d}^{10}$
- $\quad A g^{1+} \quad 1 S^{2}, 2 S^{2}, 2 P^{6}, 3 S^{2}, 3 P^{6}, 4 S^{2}, 3 d^{10}, 4 p^{6}, 4 d^{1}$

Q13.

Answer C

Explanation

$\theta_{2}=\sin ^{-1}\left(\frac{n_{1} \sin \theta_{1}}{n_{2}}\right)=23.7^{\circ}$
$x_{1}=h . \tan \theta_{2}=0.044 \mathrm{~m}$
$\theta_{3}=28.9^{\circ}$
$x_{2}=0.055 \mathrm{~m}$
$x_{3}=0.084 \mathrm{~m}$
$x_{\text {net }}=0.183 \mathrm{~m}=18.3 \mathrm{~cm}$

Q14.
Answer C
Explanation

- $\mathrm{Cl}_{2(\mathrm{~g})}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}{ }_{(\mathrm{g})}$
- $\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{Cl}_{(\mathrm{g})} \Delta \mathrm{H}=\mathrm{R}$
- $\mathrm{Cl}_{(\mathrm{g})}+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}{ }_{(\mathrm{g})} \Delta \mathrm{H}=\mathrm{S}$
- $\mathrm{Cl}_{(\mathrm{g})}+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}{ }_{(\mathrm{g})} \Delta \mathrm{H}=\mathrm{S}$
- Net reaction
- $\mathrm{Cl}_{2(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}{ }_{(\mathrm{g})} \Delta \mathrm{H}=\mathrm{R}+2 \mathrm{~S}, ~(1)}$

Q15.
 Answer B

Explanation
Step 1: is to write the balanced combustion reaction of methanol to yield CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.
Therefore, $\Delta \mathrm{H}$ must be multiplied by 2 .
$2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=(-726.4 \times 2)=-1452.8 \quad$ (1)
Step 2:

$$
\begin{aligned}
& \mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \quad \Delta \mathrm{H}=-393.5 \\
& \mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} \Delta \mathrm{H}=-285.8
\end{aligned}
$$

Step 3: Inverse equation (1)
$2 \mathrm{CO}_{z}+4 \mathrm{H}_{z} \mathrm{O} \quad \rightarrow 2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2} \quad \Delta \mathrm{H}=+1452.8 \quad$ (4)
Step 4: Multiply equation (2) $\times 2$ and equation (3) $\times 4$
$2 \mathrm{C}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2} \quad \Delta \mathrm{H}=-787 \quad$ (5)
$4 \mathrm{H}_{2}+2 \mathrm{O}_{2} \rightarrow 4 \mathrm{H}_{2} \theta \Delta \mathrm{H}=-1143.2$ (6)
Step 5: By sum equations (4), (5) and (6)
$2 \mathrm{C}+4 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CH}_{3} \mathrm{OH} \quad \Delta \mathrm{H}=-477.4$ (7)
Step 6: Divide (7) by 2
$\mathrm{C}+2 \mathrm{H}_{2}+1 / 2 \quad \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH} \quad \Delta \mathrm{H}=-238.7 \mathrm{KJ} / \mathrm{mol}$
OR:
Step 1: write a balanced reaction and reverse the reaction, reversing the $\Delta \mathrm{H}$ sign
$\mathrm{CH}_{3} \mathrm{OH}+3 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-726.4$
$\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+3 / 2 \mathrm{O}_{2} \Delta \mathrm{H}=+726.4$

Q16.

Answer A

Explanation

At point F , the highest concentration is of HA and a slight (small) change in pH .
At point H , as KOH is added, HA is gradually converted to A^{-}(buffering region), . Beyond point
G, the concentration of A^{-}is higher compared to HA.

Q17.

Answer D

Explanation

molar mass $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}=(8 \times 12.011)+(1.008 \times 10)+(4 \times 14.007)+(2 \times 15.999)=194 \mathrm{~g} / \mathrm{mol}$
No. of moles in half Finjan $=2.05 \times 10^{-3} \mathrm{~g} / 194 \mathrm{gmol}^{-1}=1.05 \times 10^{-5} \mathrm{~mol}$
Conc.in half-filled Finjan $=1.05 \times 10^{-5} \mathrm{~mol} / 12.5 \times 10^{-3} \mathrm{~L}=0.084 \times 10^{-2} \mathrm{M}$
No. of molecules in half Finjan $=\mathrm{M}$. NA . V
No. of molecules in half Finjan
$=0.084 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \times 6.02 \times 10^{23}$ molecule $\times 12.5 \times 10^{-3} \mathrm{~L}=6.321 \times 10^{18}$ molecules

Q18.

Answer A
Explanation
Water:
$m_{w}=13.40 \mathrm{~g}$
$c_{w}=4.184$
$\Delta t=(46.97-20)^{\circ} \mathrm{C}$
Gold:
$m_{A u}=\left(152-m_{C u}\right) g$
$c_{A u}=0.129$
$\Delta t=(46.97-96.72)^{\circ} \mathrm{C}$
Copper:
$m_{C u}=$?? g
$c_{C u}=0.389$
$\Delta t=(46.97-96.72)^{\circ} \mathrm{C}$
$q_{w}=-\left(q_{C u}+q_{A u}\right)$
$4.184 \times 13.40 \times 26.97=-\left(\left(m_{C u} \times 0.389 \times-49.75\right)+\left(152-m_{C u}\right) \times 0.129 \times-49.7\right.$
$536.591=12.935 m_{C u}$
$\mathrm{m}_{\mathrm{Cu}}=41.483 \mathrm{~g}$

$$
\%=\frac{41.483}{152}=27.291 \%
$$

Q19.

Answer B

Explanation

$\rho_{A} g h_{A}=\rho_{B} g h_{B}$
$\rho_{A} \frac{3 x}{2}=\rho_{B} x$
$\frac{\rho_{A}}{\rho_{B}}=\frac{2}{3}$

```
Q20.
Answer B
Explanation
    Mg(OH)
    Ksp=[Mgg+}][\mp@subsup{OHH}{-}{2}\mp@subsup{]}{}{2
    NH3+H2O}\leftrightharpoons\mp@subsup{\textrm{NH}}{4}{+}+\mp@subsup{\textrm{OH}}{}{-
    pOH = pKb + log(\frac{[NH4+]}{NH3})
    pOH = (-log 1.77 x10^-5) + log (0.2073/ 0.7147)
    pOH = 4.2145
    [OH-] = 10^-4.2125
    [OH-] = 6.1024\times10^-5 M
    Ksp=[Mg}\mp@subsup{}{}{2+}][\mp@subsup{OHH}{}{-}\mp@subsup{]}{}{2
    1.2\times10^-11 = [Mg}\mp@subsup{}{}{2+}](6.1024\times10^-5)
    [Mg}\mp@subsup{}{}{2+}]=3.22\times1\mp@subsup{0}{}{\wedge}-3 
```

```
Q21.
Answer C
Explanation
Nitrogen cycle
Syllabus: 5. System. Cycle: Nitrogen cycle
```


Q22.

Answer C

Explanation

An exothermic process, by definition, involves a reaction in which the products are lower in energy than the reactants. The reduction in chemical energy results in a release of heat from the reaction.
In the diagram, the path between points is irrelevant. We are simply looking for any instances in which the product point is below the reactant point. Point L has less energy than point K , and point N has less energy than K, L, or M . Transitions from K to L, M to N , or L to N will all result in a reduction of chemical energy, and a release of heat.

Q23.
Answer D
Explanation
$\rho=\frac{2 \pi \cdot \pi \cdot \pi^{2} \cdot 10^{-6}}{4 \cdot \pi \cdot 4 \pi \cdot 10^{-2}}$
$\sigma=\frac{8}{\pi^{2} .10^{-4}}=8.11 \times 10^{3} \Omega^{-1} \mathrm{~m}^{-1}$

Q24.

Answer A
Explanation
$\mathrm{E}=\mathrm{PE}+\mathrm{KE}$
$\mathrm{E}=\mathrm{mgh}$
E α h
$\mathrm{h} 0=1.2 \mathrm{~m}$
$\mathrm{h} 1=1.2 \times 0.84=1.008 \mathrm{~m}$
h $2=1.008 \times 0.84=0.8467 \mathrm{~m}$
$\mathrm{d}_{\mathrm{o}}=0.8467 \mathrm{~m}$
$\mathrm{f}=0.5 \mathrm{~m}$
$\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{~d}_{\mathrm{i}}}+\frac{1}{\mathrm{~d}_{\mathrm{O}}}$
$\frac{1}{\mathrm{~d}_{\mathrm{i}}}=\frac{1}{\mathrm{f}}-\frac{1}{\mathrm{do}}$
$\mathrm{d}_{\mathrm{i}}=1.22 \mathrm{~m}$
distance between the ball and its image $=1.22-0.8467=0.37 \mathrm{~m}$

Q25

Answer C

```
Explanation
mg}\operatorname{sin}0=\textrm{Eq}\operatorname{cos}
tan}0=\frac{2.00\times1\mp@subsup{0}{}{3}\times3.00\times1\mp@subsup{0}{}{-6}}{4.00\times9.81\times1\mp@subsup{0}{}{-3}
0=8.69
X=20.0 sin 8.69=3.02 cm
20.0-z = 20.0 cos 8.69
Z = 0.230 cm
R}=\sqrt{}{3.0\mp@subsup{2}{}{2}+0.23\mp@subsup{0}{}{2}}=3.03\textrm{cm
```

Q26.
Answer B
Explanation
$\frac{\rho_{\mathrm{b}} \mathrm{V}_{\mathrm{b}} \mathrm{g}-\rho_{\mathrm{w}} \mathrm{V}_{\mathrm{w}} \mathrm{g}}{\rho_{\mathrm{b}} \mathrm{V}_{\mathrm{b}} \mathrm{g}}=\frac{\mathrm{kx}_{2}}{\mathrm{kx}_{1}}$
$\frac{x_{2}}{x_{1}}=\frac{17}{27}$

Q27.

Answer B

Explanation

Absorbent spectrum of light is high of the blue colour

Q28.

Answer C

Explanation

Basic information of enzymatic activity and data in the table

Q29.

Answer C

Explanation

1. Explanation: 1: stay the same boiled (dead seeds)
2. : Soda lime is a chemical that absorbs carbon dioxide
3. : stay the same boiled (dead seeds)

The gas pushes the fluid in the syringe

Q30.

Answer A
Explanation
$\mathrm{f}_{\mathrm{d} 1}=\mathrm{fs}\left(\frac{v-v_{d}}{v-v_{s}}\right)=500\left(\frac{343-4.00}{343-30.0}\right)=542 \mathrm{~Hz}$
$\mathrm{f}_{\mathrm{d} 2}=\mathrm{fs}\left(\frac{v-v_{d}}{v-v_{s}}\right)=500\left(\frac{343-(-4.00)}{343-(-30.0)}\right)=465 \mathrm{~Hz}$
$\Delta f_{d}=f_{d 2}-f_{d 1}=465-542=-0.76 \times 10^{2} \mathrm{~Hz}$

Q	Answer				Strand
1	A	B	C	D	Physics
2	A	B	C	D	Physics
3	A	B	C	D	Biology
4	A	B	C	D	Chemistry
5	A	B	C	D	Chemistry
6	A	B	C	D	Biology
7	A	B	C	D	Biology
8	A	B	C	D	Biology
9	A	B	C	D	Physics
10	A	B	C	D	Biology
11	A	B	C	D	Biology
12	A	B	C	D	Chemistry
13	A	B	C	D	Physics
14	A	B	C	D	Chemistry
15	A	B	C	D	Chemistry
16	A	B	C	D	Chemistry
17	A	B	C	D	Chemistry
18	A	B	C	D	Chemistry
19	A	B	C	D	Physics
20	A	B	C	D	Chemistry
21	A	B	C	D	Biology
22	A	B	C	D	Chemistry
23	A	B	C	D	Physics
24	A	B	C	D	Physics
25	A	B	C	D	Physics
26	A	B	C	D	Physics
27	A	B	C	D	Biology
28	A	B	C	D	Biology
29	A	B	C	D	Biology
30	A	B	C	D	Physics

